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An increasing number of fMRI studies are using the correlation of low-frequency fluctuations between brain
regions, believed to reflect synchronized variations in neuronal activity, to infer “functional connectivity”. In
studies of autism spectrum disorder (ASD), decreases in this measure of connectivity have been found by
focusing on the response to task modulation, by using only the rest periods, or by analyzing purely resting-
state data. This difference in connectivity, however, could result from a number of different mechanisms —

differences in noise, task-related fluctuations, task performance, or spontaneous neuronal activity. In this
study, we investigate the difference in functional connectivity between adolescents with high-functioning
ASD and typically developing control subjects by examining the residual fluctuations occurring on top of the
fMRI response to an overt verbal fluency task. We find decreased correlations of these residuals (a decreased
“connectivity”) in ASD subjects. Furthermore, we find that this decrease was not due to task-related effects,
block-to-block variations in task performance, or increased noise, and the difference was greatest when
primarily rest periods are considered. These findings suggest that the estimate of disrupted functional
connectivity in ASD is likely driven by differences in task-unrelated neuronal fluctuations.

Published by Elsevier Inc.
Introduction

An increasing number of neuroimaging studies are using func-
tional MRI (fMRI) to investigate not only task-induced neuronal
activation, but also the connections between different brain regions.
This estimate of “connectivity” is typically derived by measuring the
correlation of time series fluctuations between brain areas. Synchro-
nized fluctuations in the fMRI signal intensity time series can, of
course, be task-induced, but also have been shown to occur in the
absence of an external stimulus or explicit task, particularly at low
temporal frequencies (b0.1 Hz). It is believed that these signal
fluctuations reflect synchronized variations in the neuronal activity of
a network of regions. These correlations are often referred to as
“functional connectivity,” a phenomenon first studied in fMRI by
Biswal et al. (1995) in the motor cortex. Since then a number of
studies have identified a consistent set of resting-state networks in
motor cortex, auditory cortex, visual cortex, attentional areas and the
“default mode network” areas (Damoiseaux et al., 2006; De Luca et al.,
2006; Greicius et al., 2003; Raichle et al., 2001). The default mode
network (DMN) consists of areas that consistently show deactivations
(relative to rest) during a wide range of attention-demanding tasks
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(McKiernan et al., 2003; Raichle et al., 2001). This network, which
includes the medial prefrontal cortex, posterior cingulate/precuneus,
and angular gyrus, is of particular interest because it is believed to
reflect areas that are more active during rest. Since this network is
characterized by decreases in activity during many cognitively
demanding tasks, it is also referred to as the task negative network
(TNN). In contrast, the attention network consisting of the pre-
supplementary motor area, intraparietal sulcus, and superior pre-
central sulcus is sometimes referred to ask the task positive network
(TPN) (Fox et al., 2005; Kennedy and Courchesne, 2008; Raichle et al.,
2001).

Changes in functional connectivity have been investigated in
numerous psychiatric and neurological disorders, including Alzhei-
mer's disease (Li et al., 2002; Wang et al., 2006), multiple sclerosis
(Cader et al., 2006; Lowe et al., 2002), epilepsy (Waites et al., 2006;
Whalley et al., 2005), schizophrenia (Bluhm et al., 2007; Garrity et al.,
2007; Lawrie et al., 2002; Liang et al., 2006; Zhou et al., 2007),
attention deficit hyperactivity disorder (Tian et al., 2006), depression
(Anand et al., 2005) and autism spectrum disorders (ASD) (Cher-
kassky et al., 2006; Just et al., 2004; Kennedy and Courchesne, 2008).
For example, some studies have observed an increased functional
connectivity in the default mode network in schizophrenia (Zhou
et al., 2007), while others have observed a widespread (Liang et al.,
2006) or frontotemporal (Lawrie et al., 2002) decrease in connectiv-
ity in this disorder. Likewise, a general theory of “underconnectivity”
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in autism has become prevalent in the literature (Brock et al., 2002;
Just et al., 2007). It offers a potential explanation for many ASD
characteristics and particularly an afflicted individuals' inability to
integrate information. Though underconnectivity in autism is not
ubiquitous, thalamo-cortical connectivity having been shown to be
greater in ASD (Mizuno et al., 2006; Turner, 1999), it has been
observed during sentence comprehension, verbal working memory,
semantic judgments of sentences, executive processing on the tower
of London task, visuomotor coordination, emotion perception and
other executive function tasks (Just et al., 2007, 2004; Kana et al.,
2006; Kleinhans et al., 2005; Koshino et al., 2005; Villalobos et al.,
2005; Welchew et al., 2005). Decreased connectivity in ASD has also
been found using data from subjects during a resting state
(Cherkassky et al., 2006; Kennedy and Courchesne, 2008).

The difficulty with interpreting the results of fMRI studies
investigating functional connectivity is that the measures of connec-
tivity are computed in a number of different ways and under a variety
of conditions (also, see Horwitz, 2003). The term “functional
connectivity” has most generally been defined as the “temporal
correlation between remote neurophysiological events” (Friston et al.,
1993). This definition, however, has been applied to both resting and
task data. Functional connectivity has been computed from data
acquired during task performance to determine the synchrony of
brain networks while engaged in a task (Bokde et al., 2001; Buchel
and Friston, 1997; Bullmore et al., 2000; Hampson et al., 2002). For
example, in one of the early investigations of functional connectivity
in ASD, Just et al. (2004) focused on the correlation of task effects by
only using the task blocks in their analysis. Conversely, Cherkassky et
al. (2006) looked at functional connectivity in ASD using only the rest
blocks of datasets from six different block-design experiments
(including that from Just et al., 2004 aforementioned). More recently,
Kennedy and Courchesne (2008), investigated the functional connec-
tivity in ASD using continuous resting-state data. The analysis of
functional connectivity is particularly well suited to resting data,
where an expected task response is not known (Biswal et al., 1995;
Cordes et al., 2000; Lowe et al., 1998). In addition, resting-state
designs are attractive for patient studies since they require no task
compliance and hence minimal effort by the subject. Another
alternative measure of connectivity that has been proposed is to
compute the correlation between residual fluctuations in task
activation datasets after task effects have been regressed out. This
was done by Villalobos et al. (2005), where a box-car nuisance
regressor was applied to a dataset with mixed simple (index-only)
and complex (pressing fingers in a six-digit sequence) finger tapping
tasks. The resulting residual time series may reflect the variability
between the two tasks, the trial-to-trial variability within each task,
spontaneous neuronal fluctuations, and other sources of noise,
making the measured functional connectivity more, but likely not
entirely, driven by task-unrelated fluctuations. In another task
regression technique, Fair et al. (2007), removed the task response
from an event-related design using a deconvolution approach. This
technique should model the task response more effectively than a
box-car regression, but trial-to-trial task variability would still be
present in the data.

Because of the variety of techniques used for measuring functional
connectivity, it is often difficult to draw direct comparisons between
studies. Which fluctuations in the time series are driving the measure
of connectivity?What is the source of the time series fluctuations that
result in areas being functionally “connected”? Perhaps more
importantly, when a change in functional connectivity is observed
in a particular disorder, what exactly is it that changes? For example, a
decreased connectivity (or, more precisely, a decrease in the temporal
correlation between two or more regions) in a patient group could be
due either to increased noise or to decreased “signal” (correlated
fluctuations) in that population. Differences in connectivity observed
during a task can also be influenced by variations in the task
performance, a particular concern for studies involving patients that
may have an impaired ability to perform the task. In this case,
connectivity (correlation) differencesmay simply reflect task-induced
activation differences.

In the present study, we investigate the difference in functional
connectivity between adolescents with high-functioning ASD and
typically developing (TD) control subjects during an overt verbal
fluency task designed to investigate deficits in language and executive
function. Such deficits are pervasive characteristics of autism (Howlin,
2003; Kenworthy et al., 2005; Lord and Paul, 1997; Muller et al., 1998;
Tager-Flusberg, 2003; Tager-Flusberg, 2004). The differences in
activation observed between ASD and TD subjects performing this
task, and the resulting neuroscientific and clinical interpretation, are
the focus of a separate study. The focus of this study is to delve more
deeply into measures of functional connectivity, particularly from a
methodological point of view. We compare functional connectivity
measures obtained during task modulation, and those obtained from
residual fluctuations occurring on top of the task. The primary goals of
this study are: 1) to determine whether differences in functional
connectivity in ASD subjects compared to typical controls can be seen
in residual fluctuations on top of task modulations; and 2) to
determine the sources of these changes in functional connectivity.
We investigate the connectivity both between areas active in the
fluency task, as well as between regions within the task negative
(TNN) and task positive (TPN) networks, which have been implicated
in previous studies of functional connectivity in autism (Cherkassky et
al., 2006; Kennedy and Courchesne, 2008). Based on previous studies,
our hypotheses are that there are task-unrelated fluctuations,
occurring on top of the task-induced signal changes, which are
correlated between functionally related areas — such as the areas
activated during the verbal fluency task and the areas of the task
negative (“default mode”) network. Furthermore, based on prior
studies of ASD during a resting state and the deficits in the
performance of executive function tasks typically observed in ASD
(Hill, 2004; Kenworthy et al., 2008; Pennington and Ozonoff, 1996;
Sergeant et al., 2002; Turner, 1999), we predict that the correlation of
these fluctuations (i.e., the “functional connectivity”) is lower in ASD
subjects, and that this difference in connectivity is driven in large part
by differences in neuronal activity unrelated to the verbal fluency task
performed by the subjects. Although this analysis is applied to a
particular disorder, ASD, our techniques to identify the sources of
connectivity differences and the insights gained from this investiga-
tion should extend more broadly to other studies of functional
connectivity.

Methods

General scanning information

We scanned a total of 23 adolescent high-functioning ASD male
subjects and 20 typically developing (TD) male subjects on a 3 T GE
Signa MRI scanner (Waukesha, WI). All ASD subjects met DSM-IV
criteria for ASD in the judgment of a clinician or team of clinicians
experienced with the assessment and diagnosis of individuals with
ASD (American Psychiatric Association, 1994). In addition, all ASD
participants also met criteria for an ASD on the Autism Diagnostic
Interview — revised (ADI-R, Lord et al., 1994) and/or the Autism
Diagnostic Observation Schedule (ADOS, Lord et al., 2000) according
to criteria established by the NICHD/NIDCD Collaborative Programs
for Excellence in Autism (CPEA; see Leyfer et al., 2006). Because the
ADI and ADOS do not have an algorithm for Asperger syndrome,
Lainhart et al. developed criteria that include an individual in the
broad autism spectrum if they: meet the ADI cut off for autism in the
social domain and at least one other domain or meet the ADOS cutoff
for the combined social and communication score. These criteria are
relatively inclusive, but appropriate for capturing the full autism
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spectrum as long as they are used in conjunction with clinical
assessment. TD participants were recruited from the community, and
parents of all TD participants underwent telephone screenings. TD
participants were excluded from participation if they had been given a
psychiatric diagnosis, ever received mental health treatment for
anxiety, depression, or any other psychiatric condition, taken
psychiatric medications, required special services in school, or had
trauma/injury that could potentially affect cognitive functioning and/
or brain development. All participants in both groups included for
analysis had Full Scale IQs (FSIQ) ≥85, as measured by the Wechsler
Abbreviated Scale of Intelligence (ASD: n=12, TD: n=18), Wechsler
Adult Intelligence Scale-III (ASD: n=2), Wechsler Intelligence Scale
for Children-III (ASD: n=1), or Wechsler Intelligence Scale for
Children-IV (ASD: n=1). Participants were group-matched on FSIQ.
Seven ASD subjects were excluded from the analysis: one because of a
scanner malfunction, another because of an uncorrectable suscepti-
bility artifact (braces), another because they made no behavioral
responses in the majority of the runs, another because they had an IQ
below 80, and three because of excessive head motion (motion
exclusion criterion detailed below). No TD subjects were excluded.
The data for included subjects were: 17 ASD, age: 16.1±2.6 years, IQ:
117.5±16.4; and 20 TD, age: 17.1±2.1 years, IQ: 114.0±9.0. There
was no significant difference between the groups in age or IQ (age:
p=0.22; IQ: p=0.42) (Table 1).

Subjects were scanned using a quadrature birdcage RF head coil
(GE Medical, Waukesha, WI), with TR/TE=2000 ms/30 ms, resolu-
tion: 3.8×3.8×5 mm3, 115 time points per run, and eight runs per
imaging session. The subject's head was immobilized using a vacuum
pillow (S&S Par Scientific, Houston, TX, USA). During the imaging
runs, subjects performed a self-paced overt verbal fluency task. The
task was performed in a blocked design, with 10 s periods of task
performance alternated with 10 s periods of rest (subjects instructed
to stare at a central fixation cross). Using this design, blood
oxygenation level dependent (BOLD) signal changes are delayed by
a quarter cycle relative to the motion-induced signal changes, which
occur in synchrony with the task. As a result, the correlation between
BOLD and motion-induced signal changes is small, and the number of
false positives resulting from speech-related motion artifacts (when
performing a standard regression analysis) is minimized (Birn et al.,
2004). In each 10 s block, subjects were presented with one of five
possible task cues: a single letter (1L), a single semantic category (1C),
two letters (2L), two categories (2C), or a control condition (M).
Written cue letters were presented in the center of the screen and
remained visible for the duration of the 10 s block. In the control
condition, subjects were presented with an over-learned category –

the word “months” appeared – and subjects named the months of the
year in chronological order starting from January. When presented
with a single letter or category, subjects were asked to generate as
many words as they could think of starting with that letter, or that
were members of the category, until the fixation cross appeared.
When presented with two letters, or two categories, subjects were
Table 1
Age and full scale IQ (FSIQ) for subjects with autism spectrum disorder (ASD) and
typically developing (TD) control subject.

ASD (N=17) TD (N=20)

Age 16.02 (2.45) 17.05 (2.10)
FSIQ 117.50 (15.84)a 114.00 (9.04)b

ADI social interaction 20.94 (4.99)a (range=8–28) –

ADI verbal communication 15.43 (5.00)a (range=6–26) –

ADI repetitive behaviors 6.69 (2.95)a (range=3–12) –

ADOS social+communication 11.71 (4.29) (range=5–17) –

ASD and TD subjects were matched for age and FSIQ. Scores from Autism Diagnostic
Interview (ADI) and Autism Diagnostic Observation Schedule (ADOS) for autistic
subjects.

a n=16.
b n=18.
required to generate one word corresponding to one of the letters or
categories, then switch to the other letter or category, and continue to
alternate between the two cues. Each condition was presented twice,
in random order, in each of 8 runs for a total of 16 unique blocks for
each of the letter and category conditions per run. The subject's
spoken responses were recorded using an optical microphone with
active noise cancellation (Phone-Or, Inc., Israel). This microphone and
the associated processing software allowed the subject's response to
be separated from the scanner sounds.

Functional connectivity ROI definition

Seed ROIs for the connectivity analysis were taken from activation
maps generated by a multiple linear regression analysis of the fluency
task. All functional image analysiswasdoneusing the softwarepackage
AFNI (Cox, 1996). Every run was motion corrected (3dvolreg) — all
images being registered to the fifth volume of the first run. Every slice
was time shift corrected (3dTshift) to temporally align all slices with
the first slice in the acquisition. The images were spatially smoothed
(3dmerge) by a Gaussian kernel with FWHM=5 mm. Every voxel
was converted to percent signal change (3dcalc) by normalization to
its mean over the run. The first five data points from every run were
excluded for transient T1 effects and all eight runs were concatenated
for every subject to ease further analysis. BOLD response amplitudes
for each of the five conditions were obtained by general linear model
on the concatenated subject datasets. BOLD signal changes were
modeled using the stimulus timing convolved with a gamma-variate
(Cohen, 1997). These beta weights were then converted to Talairach
space and submitted to a group ANOVA (pooled across both groups,
ASD and TD). We pooled the two groups (ASD and TD) in the ANOVA
to eliminate biases toward one subject group in the ROI definitions.
Regions with a significant difference in the response to category (C)
vs. letter (L) fluency, and regions with a significant difference
between the more demanding fluency tasks (1C, 2C, 1L, 2L) compared
to the control task (M), were used for the functional connectivity
analysis (see Fig. 1, Table 2). Seventeen anatomically distinct ROIs
were drawn from these contrasts and are tabulated in Table 2. In
addition, six spherical ROIs of diameter 12 mm in the task negative
network (TNN) and task positive network (TPN) were included in the
analysis for comparison to previous studies of default mode network
activity in ASD (Kennedy and Courchesne, 2008). Three were in the
TNN and three were in the TPN, and they were centered on the same
locations used previously by Kennedy and Courchesne (2008) and Fox
et al. (2005) (Table 2). All 23 ROIs were then converted back to every
individual subject's native space, creating 23 distinct ROIs for every
subject.

Functional connectivity analyses

Preprocessing steps for the functional connectivity analysis were
similar to that used for the task activation mapping. The primary
differences were that in the functional connectivity analysis, images
were not smoothed, and time series were low pass filtered with a
cutoff of 0.1 Hz. Time points with excessive head motion were
censored from further analysis. The method implemented was very
similar to that proposed by Kennedy and Courchesne (2008). The six
motion parameter time courses created by 3dvolreg were first
individually concatenated for all eight runs. The square root of the
sum of squares of the derivatives (SSD, Eq. 1) of these six time courses
was calculated for every subject:

SSD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d xð Þ=dtð Þ2 + d yð Þ=dtð Þ2 + d zð Þ=dtð Þ2 + d rollð Þ=dtð Þ2

+ d pitchð Þ=dtð Þ2 + d yawð Þ=dtð Þ2

s
: ð1Þ

Where x, y, and z are the translations (in mm), and roll, pitch, and
yaw are the rotations (in degrees). Any point with an SSD greater than



Fig. 1. Activation maps pooled across all subjects (ASD and TD) used to generate ROIs for the connectivity analysis. The upper contrast is for Letter (L) vs. Category (C) at a threshold
of pb1⁎10−4. The lower contrast is for control (M) vs. other tasks (C,L) at a threshold of pb1⁎10−8. Left is left.

Table 2
These ROIs were used for the connectivity analysis.

ROI Code Contrast Thresh Coords (x, y, z)

Left fusiform LFUS1 CNL pb10−6 (−22, −40, −13)
Left fusiform LFUS2 LNC pb10−6 (−44, −65, −5)
Right fusiform RFUS LNC pb10−6 (43, 56, −10)
Left inferior frontal gyrus LIFG1 LNC pb10−6 (−45, 24, 13)
Left inferior frontal gyrus LIFG2 LNC pb10−6 (−45, 3, 23)
Left inferior frontal gyrus LIFG3 LNC, ASDNTD pb10−2 (−40, 20, 14)
Right inferior frontal gyrus RIFG1 LNC pb10−4 (45, −24, 12)
Right inferior frontal gyrus RIFG2 LNC pb10−4 (43, 3, 26)
Left posterior cingulate LPC CNL pb10−6 (−7, −57, 11)
Right posterior cingulate RPC CNL pb10−6 (7, 57, 13)
Right lingual gyrus RLG CNL pb10−6 (14, −81, −7)
Left inferior parietal lobule LIPL LNC pb10−6 (−37, −48, −44)
Right inferior parietal lobule RIPL LNC pb10−6 (34, −50, 38)
Left precentral gyrus LPCG MN(C,L) pb10−8 (−48, −16, 34)
Right precentral gyrus RPCG MN(C,L) pb10−8 (49, −12, 7)
Left superior temporal gyrus LSTG MN(C,L) pb10−8 (−50, −12, 33)
Right superior temporal gyrus RSTG MN(C,L) pb10−8 (53, −18, 4)
TNN left angular gyrus TNN_LAG N/A N/A (−45, −67, 36)
TNN medial prefontal cortex TNN_MPFC N/A N/A (−1, 47, −4)
TNN posterior cing./precuneus TNN_PPC N/A N/A (−5, −49, 40)
TPN left intraparietal sulcus TPN_LIPS N/A N/A (−25, −57, 46)
TPN left medial temporal region TPN_LMTR N/A N/A (−45, −69, −2)
TPN right sup. precentral sulc. TPN_RSPS N/A N/A (25, −13, 50)

Center of mass coordinates are in Talairach space. C=Category, L=Letter, M=Months.

404 T.B. Jones et al. / NeuroImage 49 (2010) 401–414



405T.B. Jones et al. / NeuroImage 49 (2010) 401–414
1 (and its two immediately neighboring points) was ignored. In the
case of pure translation (i.e. no rotation), an SSD threshold of 1
could be thought of as a translation of 1 mm in any one translational
direction, or a combination of translations of 0.577 mm in all three
translational directions, in the time of one TR. This is a conservative
illustration because any rotational components would decrease the
maximum contribution of any other one component and because
neighboring data points were also ignored. In addition, a rotation
of 1°, measured by the registration program around the center of
the image, would cause a voxel shift of 1.5 mm at the edge of the
brain (about 84 mm from the center of the image), but less shift
of voxels inside the brain closer to the center. Any subject with
greater than 25% of its data points being ignored was excluded
from the analysis.

Functional connectivity was computed using time courses (either
with or without regressing out the task effects, as detailed below)
averaged over the ROIs. Two different methods of computing
functional connectivity were implemented. The first consisted of
correlating all 17 task-defined ROIs with each other, producing a
correlation matrix with dimensions 17×17 for every subject. These
correlation matrices were converted to Fisher-Z scores and averaged
across the two groups (ASD and TD). A t-test was then performed on
each element of the correlation matrix, showing differences in
functional connections between the groups. These computations
were performed in Microsoft Excel (Redmond, WA), and plotted
using Mathcad (Parametric Technology Corp., Needham, MA). The
second type of connectivity involved correlating the average time
courses from the 17 task-defined ROIs and 6 TNN and TPN ROIs with
the entire brain, creating connectivity maps. These maps were then
converted to Fisher-Z scores and averaged within groups. A t-test
was performed on each voxel in these maps to depict areas where
the groups showed differences in connectivity, unbiased by multiple
ROI definitions.

In previous investigations of ASD, the functional connectivity
between brain regions has been computed during the resting state
(Kennedy and Courchesne, 2008), during rest blocks (Cherkassky et
al., 2006) or during task blocks (Just et al., 2004). In order to
investigate the effect of task-related responses on the measure of
connectivity in our study, three different methods of task regression
were done prior to averaging the time courses over the ROIs, and
prior to computing the correlation between these ROI-average time
series. The first measure of “connectivity” used the raw preprocessed
time courses with task responses included (Method 1. Abbr. M1).
This method is similar to a multiple regression analysis of the task
activation because the signal contains the response of each task vs.
the fixation baseline. The second measure of connectivity used the
residual fluctuations after removing the task response, but where all
5 task conditions were considered to have the same amplitude and
shape (Method 2. Abbr. M2). This was done by performing a
deconvolution analysis that models the average response to a task
block for each voxel. The resulting residual fluctuations, after the
average task block response is regressed out, have had the task vs.
fixation differences removed, but the variability between the
different task types preserved. Computing the functional connectiv-
ity with this preprocessing method is similar to computing the
functional connectivity from a design that includes continuous task
switching without rest intervals, or a design that preserves the task
activation differences to different task types, such as that imple-
mented by Just et al. (2004). The third measure of connectivity used
the residual fluctuations after removing the task response decon-
volved over every individual task condition (Method 3. Abbr. M3).
Again, this task regression does not assume a fixed shape of the
hemodynamic response, but instead removes the mean response
averaged over all similar task blocks. The resulting residual time
course is similar to resting-state data, but will contain the trial-to-
trial variability in the task-related response. The task-related
responses in M2 and M3 were removed together with other nuisance
regressors (e.g. the subject motion and its derivatives). This
regression was performed prior to computing the correlation
between ROI time series. This is mathematically identical to
including the nuisance regression together with the seed-ROI time
series in a single regression step, since the nuisance regressors are
removed from all ROI time series, including the seed (the regressor
of interest in the regression analysis).

Analysis of potential sources for connectivity differences

Several additional analyses were performed to investigate other
aspects of the signal, the contributions to the measure functional
connectivity, and the causes for differences in functional connectivity
between groups. One possible contribution to functional connectivity
is a block-to-block variability in the subject behavior. To test whether
behavioral variability contributed to the residual fluctuations, partic-
ularly in M3 (which excluded explicit task modulations), we created
behavioral regressors to correlate with the ROI time courses. These
behavioral regressors were created by convolving the typical gamma-
variate hemodynamic response function (HRF) with the number of
words produced in each task block. To make regressors analogous to
M3, we removed the average number of words produced in each task
from those task blocks prior to convolving with the gamma-variate.
We then correlated these regressors with the ROI time courses to
determine which correlations might be driven by behavioral output.
We also performed a t-test between groups to investigate if
differences between ASD and TD could be explained by this factor.

We also wanted to investigate whether a difference in functional
connectivity between subject groups was simply a function of
differences in noise characteristics between ASD and TD. It is
conceivable that reduced functional connectivity in ASD is simply
due to increased noise. To test this, we took the standard deviations of
the individual ROI time courses and submitted them to t-tests
between groups.

Significant differences in functional connectivity between ASD and
control subjects have been found using data taken exclusively from
task blocks (Just et al., 2004), or exclusively from rest blocks
(Cherkassky et al., 2006). To evaluate the relative contributions of
rest and task periods to functional connectivity, we recomputed the
connectivity measure after ignoring, or censoring, several blocks of
the time course data. A censor file was first created that removed all of
the task blocks from the functional connectivity calculation (i.e.
computing the correlation using only the rest blocks). This case is
similar to that used by Cherkassky et al. (2006). We then repeated the
functional connectivity calculation multiple times, each time after
shifting the censor file by a TR increment, until the rest blocks were
censored (i.e. computing the correlation using only the time points
during the task blocks). The latter case is similar to that performed by
Just et al. (2004). By performing this recursive censoring, we can
determine how the correlations vary as a function of which parts of
the signal we censor.

Several previous studies of functional connectivity regress out
global signal fluctuations (i.e. the average signal over the entire brain
at each point in time) prior to correlation analysis in order to reduce
the influence of global fluctuations in blood flow and oxygenation.
Such a preprocessing technique, however, can be problematic since it
changes the distribution of correlation values across the brain and
could induce false anti-correlations between brain regions (Murphy
et al., 2009b). We therefore did not include this as a standard
preprocessing step in our analyses described above. Instead, in order
to evaluate the effect of global signal regression on both the
correlation values and the difference in correlation observed
between subject groups, we performed an additional functional
connectivity analysis, similar to Method 3, but adding global signal
regression as an additional preprocessing step.
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Results

Activation results and ROI definitions

The general activation results used to define the ROIs can be seen
in Fig. 1. The selectivity (C, L or M) of the active areas are tabulated in
Table 2 and can be visualized in Fig. 1. The ROIs for the connectivity
analysis were drawn according to the spatial extent of activation seen
in Fig. 1.

Connectivity results

Fig. 2 shows the effect of regressing out the task from M1 to M2
andM3. The full BOLD responses to the tasks can be seen in M1, while
the residual task-to-task variability in the BOLD responses can be
seen in M2 (Fig. 2). As expected, there is no average BOLD response to
any task remaining in M3 (Fig. 2). Note that a large amount of
variance remains in signal both after regressing out the response
common to all tasks (M2) in addition to the response specific to every
task (M3) (Fig. 2).

The correlation between the fluctuations in the various regions
interest (i.e. the “connectivity”) was highly significant for both TD and
ASD groups for most of the ROI comparisons in M1, M2, and M3. The
connectivity was generally reduced in ASD compared to TD subjects
for all three methods of task regression (Figs. 3, 4, and 5). Twenty-two
of the 136 ROI comparisons showed a lower connectivity in ASD
compared to TD for M1 (pb0.05, uncorrected) (Fig. 3). Of these 22,
sevenwere still significant at pb0.05 (uncorrected) after regression of
the common task response in M2 (i.e. after removing signal
modulations of the task vs. fixation baseline) (Fig. 4). Similarly, the
difference between correlations in ASDs and TDs remained significant
for seven ROI comparisons in M3 (after regressing out all task effects),
five of which were the same as M2 (Figs. 4 and 5).

The TNN is clearly visible in both the TD and ASD groups (Fig. 7). In
the TD group, the highest correlations exist in typical default mode
Fig. 2. Time series (right) for the three task regression methods and associated average ti
areas: dorsal and ventral medial prefrontal cortex, the posterior
cingulate/precuneus and left and right angular gyrus. Though to a
lesser extent, the same areas are shown in the ASD group (Fig. 7).
These connectivity maps show striking similarity to the TNN maps
generated by Kennedy and Courchesne (2008) in resting-state TD and
ASD data as well as those generated by Fox et al. (2005), from which
the ROIs were defined. Significant differences in the connectivity to
the left angular gyrus (i.e. where the left angular gyrus (TNN_LAG) is
the seed ROI) were observed in the medial prefrontal cortex, right
angular gyrus, and right cerebellum (pb0.01, corrected for multiple
comparisons; indicated by green arrows in Fig. 7). In addition, a
significant difference in the connectivity between the posterior
cingulate and the medial prefrontal gyrus was observed, using a
seed time series in the posterior cingulate/precuneus. However, these
differences were not significant after global signal regression (using
the same correlation coefficient threshold).

Additional analysis

The correlations between the behavioral regressors and the
residuals from M3 were quite low, b0.12 (Fig. 8). However, the
highest correlations were observed in the precentral gyrus (RPCG
and LPCG) and superior temporal gyrus (RSTG and LSTG), bilaterally
(Fig. 8), areas known to be involved in motor control (motor cortex)
and speech production (Wernicke's Area), respectively. These areas
also showed a greater response to the “months” control condition,
during which subjects produced almost twice as many words as
compared to the other more effortful category and letter fluency
conditions (Fig. 1).

The average standard deviations of the ROI time courses from
Method 3 are depicted in Fig. 9 and show that TD subjects tend to have
a slightly higher variance than ASD subjects. However, of the 23 ROIs,
only two showed a significant difference (pb0.05), TD showing
greater variance than ASD in the right posterior cingulate (RPC) and
the medial prefrontal cortex of the TNN (TNN_MPFC) (Fig. 9). A
me series (left). Time series taken from the LIFG ROI seed for TD subject number 18.



Fig. 3. ROI connectivity matrix with raw preprocessed subject time courses (M1). Correlation coefficients were converted to Fisher-Z scores, averaged across groups (ASD and TD),
and then reconverted back to correlation coefficients. Within each cell, TD values are on top, ASD on bottom. Highlighted cells represent significant differences between groups (all
ASDbTD, two-tailed t-test, pb0.05 uncorrected).
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measure of standard deviation does make the assumption that the
noise is normally distributed, which is not strictly true in fMRI data.
The difference in variance of the time series was therefore additionally
assessed using a Levene's test (Levene, 1960; Neter et al., 1996),
Fig. 4. ROI connectivity matrix after removal of the common task response (M2). Correlatio
and then reconverted back to correlation coefficients. Within each cell, TD values are on top
ASDbTD, two-tailed t-test, pb0.05 uncorrected).
computed by concatenating the ROI time series for each of the subject
groups, and comparing the fluctuations in the two concatenated
datasets. Similarly, only two ROIs showed significant differences in
this measure, the LIPL and the TPN_LIPS.
n coefficients were converted to Fisher-Z scores, averaged across groups (ASD and TD),
, ASD on bottom. Highlighted cells represent significant differences between groups (all



Fig. 5. ROI connectivity matrix after removal of the individual task responses (M3). Correlation coefficients were converted to Fisher-Z scores, averaged across groups (ASD and TD),
and then reconverted back to correlation coefficients. Within each cell, TD values are on top, ASD on bottom. Highlighted cells represent significant differences between groups (all
ASDbTD, two-tailed t-test, pb0.05 uncorrected).
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Fig. 10 indicates that the correlation reached a maximum at a
censor lag of approximately 3 to 5 s. Due to the hemodynamic lag of
the BOLD contrast, this indicates that the peak correlation occurs
during the hemodynamic “rest period” between task blocks. This is
consistent across ROIs, and we only present the LFUS1–LIFG1
comparison as an example.

Global signal regression substantially changes both the connec-
tivity maps as well as the statistical difference maps (Fig. 7). The same
areas retain the highest correlations both before and after global
signal regression, however, outside these areas, the correlation
coefficients have been dramatically reduced (Fig. 7). Furthermore,
noting the blue areas in Fig. 7, weak negative correlations have
actually been introduced in some areas, a phenomenon of particular
concern (Murphy et al., 2009b). Additionally, only the LIFG1–LFUS1,
LIFG1–LFUS3 and LIFG1–LIPL correlations show a similar difference in
functional connectivity as obtained from M3, with a significantly
lower (pb0.05, uncorrected) connectivity in ASD (Fig. 6). Two other
ROI correlations showed significantly lower connectivity in ASD that
were not evident in M3 (LIFG1–LIFG2 and RIFG2–LSTG) while two
more ROI correlations actually became greater in ASD (RFUS–LPCG
and RLG–RPCG) (Fig. 6). In other words, the group effect on
connectivity is dramatically changed when global signal regression
is used as a physiological correction.

The correlation between ROIs generally increased after regressing
out task differences (M3 compared to M2) (Figs. 4, 5 and 10). Of the
136 ROI comparisons, 74 correlations were significantly greater for
M3 compared to M2 in TD subjects, and 35 were significantly greater
for M3 compared to M2 in ASD subjects (pb0.05, uncorrected).
Conversely, in both ASD and TD subjects, six ROI pairs had a
significantly greater correlation when task difference effects were
present (M2) compared to when they were regressed out (M3)
(pb0.05, uncorrected). This occurred between the right and left
precentral gyrii (RPCG and LPCG) and the right and left superior
temporal gyrii (RSTG and LSTG), the same areas that were
preferentially active for months and that showed the greatest effect
of behavioral variability (Fig. 1, Fig. 8 and Table 2). The majority of all
other ROI comparisons showed a trend of a greater correlation in M3
compared to M2, but did not reach significance.

Discussion

In this study, functional connectivity was computed in a number
of different ways. Computing the functional connectivity (correla-
tion) from the signal intensity time course without removing any
task-related effects (M1) shows areas with a similar response to the
induced task compared to baseline. Differences in correlation of ROI
time courses for TD compared to ASD subjects, in this case, could
simply reflect the differences in the task-related response. This is
similar to a more conventional regression analysis, and whether this
should really be called a measure of “connectivity” is debatable. In
Method 2, the relatively large signal changes of the task relative to
fixation have been removed, but the difference in response between
different task types remains. The correlation of time series from this
method are perhaps more interesting than those from Method 1, in
that they reflect the similarity of more subtle task modulation effects
(e.g. Category vs Letter fluency) as well as other residual fluctua-
tions, instead of primarily the similarity of the response to task vs
fixation. However, it is unclear using only Method 2 whether the
correlations are driven by the task modulations, or other residual
fluctuations. In Method 3, the average task-related response for each
task type has been removed. Regions that are significantly correlated
in this method therefore reflect regions with similar residual
fluctuations occurring on top of the task, and not including any
similar average responses to the task or task modulation. What is
particularly interesting is that the correlation of the fluctuations
between most of the ROIs increases when task modulations are
removed (going from M2 to M3). This suggests that the correlation
of time courses in M2 is driven by fluctuations occurring on top of
the average task-related responses, rather than the task-induced
modulation. Such fluctuations may be similar to what is observed



Fig. 6. ROI connectivity matrix after removal of the individual task responses (M3) and after global signal regression (GSR). Correlation coefficients were converted to Fisher-Z scores,
averaged across groups (ASD and TD), and then reconverted back to correlation coefficients. Within each cell, TD values are on top, ASD on bottom. Highlighted cells represent
significant differences between groups (two-tailed t-test, pb0.05 uncorrected).
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during the resting state, where no explicit task, or task modulation,
is performed.

Highly significant correlations of the residual fluctuations occur-
ring on top of task-related responses were found between a number
of functionally related areas. These correlated networks were similar
to many of the “functional connectivity” networks observed during
rest (e.g. the motor network, or the default mode network as shown
in Fig. 7). In general, these networks were highly similar in
adolescents with high-functioning autism compared to typically
developing control subjects. However, a difference in the correlation
of residual fluctuations (M3), occurring on top of task-induced
responses, was observed between specific brain regions, consistent
with other reports of decreased connectivity in ASD (Belmonte et al.,
2004; Brock et al., 2002; Cherkassky et al., 2006; Just et al., 2007;
Kennedy and Courchesne, 2008). While many of these differences
were only significant at an uncorrected pb0.05, and should therefore
be regarded as preliminary, it is important to note that the average
correlation for ASD subjects was always lower than the average
correlation for TD subjects, for each one of these ROI pairs. If the
difference in connectivity (correlation) for ASD compared to TD
subjects were due purely to chance, then some of these differences
would likely be positive, while others would be negative. In
particular, we found lower correlations (a decreased “connectivity”)
in ASD subjects, primarily between frontal and posterior cortices.
This included a reduced connectivity between the left inferior frontal
gyrus and left fusiform gyrus, the right inferior frontal gyrus and right
fusiform, the left inferior frontal gyrus and the left superior parietal
lobule, and the right inferior frontal gyrus and right inferior parietal
lobule (Fig. 5). A decreased connectivity in ASD subjects was also
observed between the left and right fusiform gyrii, as well as the left
and right precentral gyrii. A difference in connectivity of the task
negative network (TNN) was observed, similar to the results by
Kennedy and Courchesne (2008), with decreased connectivity in ASD
subjects particularly between the medial prefrontal cortex and the
left angular gyrus and posterior cingulate (pb0.05, corrected for
multiple comparisons).

It is important to note that these residual fluctuations reflect the
deviation from the average response to each task. Thus, even though
the ROIs were defined by the task, the correlation between these
residuals reflects novel information not captured in the activation
mapping linear regression analysis. That is, the correlation between
two regions cannot simply be the result of a similarity in the average
task-related response. Furthermore, the decreased correlations of
residual fluctuations in ASD are likely not due to block-to-block
variations in the behavior (the number of words produced in each
block), the correlation values between the behavioral regressors and
the residuals being quite low (Fig. 8). Likewise, the differences in
correlation between ASD and TD are likely not due to differences in
noise, since the standard deviations over time in the ROIs showing a
difference in connectivity are similar between the groups (Fig. 9). In
fact, there appears to be a trend towards TDs having a higher temporal
standard deviation than ASDs. The difference in connectivity is
therefore more likely due to a decreased signal in the ASD patients
rather than an increased level of noise. Also, the correlation between
specific brain areaswas higher after removal of all task-related effects;
that is, the correlations go up fromM2 toM3 (Figs. 4 and 5). This again
suggests that task-related effects are likely not driving the correlation,
or the difference in correlation, between specific brain regions such as
the fusiform and the inferior frontal gyrus. Consistent with this
observation, the correlations are highest when the BOLD responses to
the task blocks are ignored, the censor file being shifted by the
hemodynamic delay (Fig. 10). These observations support the
hypothesis that correlated fluctuations, and the differences in these
fluctuations between ASD and TD subjects, are driven by task-
unrelated neuronal fluctuations.

Some areas, notably bilateral precentral gyrus and superior
temporal gyrus, did show a slight correlation with block-to-block
variability in behavior (Fig. 8). These areas are hypothesized to be



Fig. 7. Images of the task negative network (TNN) derived from the correlation with a time series from the left angular gyrus (TNN_LAG). The three left images are without global
signal regression (GR), whereas the right three images are with GR. The average ASD maps are on top, TD in the middle and difference on the bottom. Unthresholded images are
included to provide a representation of the functional connectivity measure unbiased by the choice of a particular threshold. Significant differences in the correlation with the left
angular gyrus seed time series (indicated by the green arrows) were observed in the right angular gyrus and the right cerebellum, at a pb0.05 (corrected for multiple comparisons).
These differences, however, did not pass the same significance (t-statistic) threshold after global signal regression.

Fig. 8. Correlations between the subject time courses and the behavioral regressors averaged over ASD and TD groups. The behavioral regressors were created by convolving the gamma-
variate with the number of words produced in each block. Error bars represent standard deviation. No significant differences between ASD and TDwere found (two-tailed t-test, pb0.05).
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Fig. 9. Temporal standard deviations of the subject time courses (after regressing out average task responses, M3) averaged over the ASD and TD groups. The behavioral regressors
were created by convolving the gamma-variate with the number of words produced in each block. Error bars represent standard deviation (of the temporal standard deviation).
Significant differences were found in the RPC and TNN_MPFC, TD greater than ASD (two-tailed t-test, pb0.05).
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active in word production. It therefore makes sense that their activity
would be modulated by behavioral output to a higher degree than
other areas. The fact that the correlation with the behavioral regressor
is not very high (correlation coefficient ~0.1), however, suggests that
this behavioral variability only accounts for a small portion of the
residual variability. It is also interesting to note that in almost all of the
regions of interest, the correlation between the residual signal time
course and the behavior is slightly higher in ASDs. While this is not a
significant difference, the trend is in the opposite direction to what
would be expected if residual behavioral differences are driving the
connectivity and the differences in connectivity. A higher correlation
of residual task-related effects should result in a greater connectivity,
whereas a lower connectivity was in fact observed in ASD subjects.

A previous study by Villalobos et al. (2005) regressed out the task
during a box-car paradigm by shifting a smoothed box-car regressor.
In our study, task effects were removed by deconvolution. Rather than
assuming a fixed shape for the task response, deconvolution removes
any response that is time locked with the task performance and
consistent across performances of the same task. This procedure is less
prone to errors resulting from an inaccurate ideal model of the BOLD
response.

Some task-related effects, such as nonlinearities in the BOLD
response or block-to-block variability in behavior not captured by the
Fig. 10. Correlations between the LIFG1 and LFUS1 averaged across the ASD and TD
groups after censoring the subject time courses at various lags. Correlations were first
made only on the rest periods and then recalculated after TR shifts of the censor file
until only the task periods were included in the correlation.
number of words produced, may still remain in the signal even after
deconvolution of the task. For this to affect the difference in
connectivity observed between ASD and TD subjects would require
a different nonlinearity in the BOLD responses between patient and
control groups, or a systematic difference in the timing or pattern of
responses between ASD and TD subjects.

Physiological noise is, of course, another potential confound in
functional connectivity studies (Bhattacharyya and Lowe, 2004; Birn
et al., 2006; Cordes et al., 2001; Lowe et al., 1998; Lund, 2001; Wise et
al., 2004). The data used in this study were acquired prior to our
previously published studies on the effects of physiological noise in
functional connectivity analysis (Birn et al., 2006) and before
physiological recording equipment was in place on our scanners. As
a result, traditional physiological corrections (e.g. RETROICOR, Glover
et al., 2000; RVT-COR, Birn et al., 2006), were not able to be performed.
The spatial pattern of the connectivity maps in individual subjects,
however, did not closely resemble that expected for respiration.
Signal changes correlated with breath-to-breath changes in the
respiration depth and rate occur throughout gray matter, but are
particularly large signal changes in the Circle of Willis, medial visual
areas, posterior cingulate, and precuneus (Birn et al., 2006). While the
connectivity maps prior to global signal regression do show a certain
amount of correlation with the seed throughout gray matter, the
highest correlations to each seed ROI (i.e. the “hot spots” on the
correlation map) are not in locations that typically show the largest
respiration-induced signal changes (e.g. see Fig. 7).

We also investigated the effect of global signal regression, a
common surrogate for physiological correction. The motivation for
this correction step, traditionally, is that correlated fluctuations are
expected to occur in smaller localized regions, and that any global
variations in signal intensity are uninteresting. The difficulty with this
preprocessing step is that it relies on the assumption that global signal
fluctuations are non-neuronal (or otherwise uninteresting). In
addition, global signal regression can induce anti-correlations
between a seed region and other voxels (Fox et al., 2009; Murphy et
al., 2009a). Erroneous changes to the correlation coefficients are
particularly large when the fluctuations of interest are a significant
contribution to the global signal. Global signal regression may
therefore not be advisable when the functionally correlated network
being investigated spans across several brain regions or covers large
areas of the cortex. In our analysis, we found that global signal
regression does make the observed signal correlations more focal in
space, particularly on group maps. Without this preprocessing step,
relatively high correlation with each seed ROI was observed
throughout gray matter, but with the highest signal changes in
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more focal regions. Thesemore focal regions largely overlappedwith the
other ROIs (i.e. areas activatedduring thefluency task), and likely reflect
brain areas that are functionally related, or “connected.” After global
signal regression, significant correlations with the seed ROI were more
focal. However, it is unclear to what degree the correlation with true
neuronal fluctuations are also altered by this preprocessing step. Some
of the “hot spots” present prior to global signal regression (i.e. regions
with the highest correlation to the seed-ROI time course) were no
longer significant after global signal regression. In other words, the two
connectivity maps (before vs. after global signal regression) could be
made similar, but not identical, by changing the correlation coefficient
thresholds. It is unclear which of these maps is more correct—whether
global signal regression removed an artifactual correlation, a true
neuronal correlation, or both. In addition, we found that global signal
regressionnot only changes the correlationvalues substantially, but also
changes the significant differences in the correlation values between
ASD and TD subjects (Figs. 5, 6 and 7). Our study cannot definitively
show whether true differences between ASD and TD subjects are
revealed by removing a global confound, or whether false differences
are introduced by this preprocessing step, and therefore both results are
presented. Given that the verbal fluency task involves the coordinated
activity of a relatively large network of brain areas, the BOLD response
from synchronized spontaneous neuronal fluctuations within this
network could contribute a significant portion to the global signal
changes. Consequently great care should be taken in interpreting results
when global signal regression is used.

Functional connectivity in ASD, as well as other disorders, has been
measured in many different ways — by looking at either the
correlation of signal fluctuations in response to a task (Just et al.,
2004); signal fluctuations in the absence of an external stimulus or
explicit task, either from a continuous resting run (Kennedy and
Courchesne, 2008) or by considering only the rest blocks from a block-
design experiment (Cherkassky et al., 2006); or signal fluctuations on
top of task-related responses (Villalobos et al., 2005). What is the
source of the fluctuations that are driving the correlations in each of
these connectivity measures? To what extent is the measure of
functional connectivity influenced by preceding tasks, or by the
performance of a concurrent task?

Measures of connectivity obtained from an explicit task modula-
tion are almost certainly influenced by the performance of the task.
Previous studies have shown that such task-related functional
connectivity measures can be significantly different from measures
of connectivity obtained during rest (Calhoun et al., 2008; Harrison et
al., 2008). Differences in the connectivity measures for ASD vs TD
subjects obtained from Method 1 and Method 2 in this study could
therefore be at least partially reflective of differences in the task-
induced activation between the two subject groups. However, such
observed differences between connectivity measures obtained from
task modulation and those obtained from resting data should not be
surprising and do not invalidate either technique. Rather they may
point to the different functional roles of parts of a network.

Measures of connectivity can also be affected by prior tasks.Waites
et al. (2005), for example, found that resting-state connectivity maps
following a language task were significantly different from maps
obtained from resting runs before these tasks. In contrast, Fair et al.
(2007) found only small differences between connectivity measures
obtained from resting blocks extracted from a blocked design object
recognition task compared to a continuous resting scan. It is possible
that the discrepancy between these studies reflects the sensitivity of
functional connectivity measures to subtle differences in the cognitive
state—whichmay be altered by some preceding tasks, but not others.

Particularly relevant to the measure of connectivity obtained from
Method 3 in this study is the potential difference in the correlation of
fluctuations occurring on top of an explicit task compared with
fluctuations occurring during rest (in the absence of any task demand).
The study by Fair et al. (2007), for example, showed that using the
residuals on top of task-related activation can lead to slightly different
connectivity maps compared to using either the resting blocks from a
blocked design study or a continuous resting-state scan. The study
concluded that connectivity measurements obtained from residuals
occurring on top of tasks should therefore be interpreted with caution.
However, an alternative source of the difference in the connectivity
maps obtained during rest vs. from residuals on top of tasks is that
during the “resting” state, the subject may be engaged in a series of
cognitive “tasks,” such as mind wandering, monitoring of the
environment or body state (Mason et al., 2007), or reflecting on
prior tasks (Waites et al., 2005). Some of these activities may be
reduced during the performance of an explicit task. The correlation of
fluctuations on top of task-induced responses may therefore more
accurately reflect the spontaneous neuronal fluctuations within the
brain's multiple networks. The investigation of connectivity based on
residual fluctuations occurring on top of a task should therefore not be
ruled out. Rather, it provides additional and potentially clinically
relevant information beyond what is obtained from a more conven-
tional regression analysis of task-related differences. While the present
study rules out some potential mechanisms, further investigation is
needed to conclusively determine the source of the correlated
fluctuations occurring on top of a task.

Conclusions

In this study, we found strong correlations in the residual
fluctuations occurring on top of a task in both TD and ASD subjects.
The connectivity maps derived from these residuals are highly similar
to maps seen in other resting-state studies. The high correlation of the
residuals is likely driven by task-unrelated fluctuations, since the
correlation increases when task effects are regressed out and when
task blocks are ignored. Furthermore, we find differences in these
correlations between two subject groups — adolescents with ASD
compared to typical controls.

Many studies have shown significant differences in functional
connectivity between patient and control groups, particularly for
autism. For all functional connectivity studies, it is important to
remember that the correlation of fluctuations between two or more
regions is used as ameasure of connectivity. All studies demonstrating
changes in connectivity should therefore investigate what aspects of
the signal are changing to cause this difference in correlation. In this
study we find differences in fluctuations occurring on top of task-
induced responses between ASD and TD subjects performing a verbal
fluency task. The differences in the correlation of these fluctuations
are not due to a difference in overall noise level, are not related to
block-to-block variations in one aspect of behavior (the number
words produced per block), and are higher both when task effects are
regressed out and when task periods are ignored. These findings
suggest that the functional connectivity of residuals on top of task
responses, and differences in functional connectivity observed in
autism, are driven by task-unrelated fluctuations, possibly spontane-
ous neuronal fluctuations.
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